CNP fraud is just online carding

I recently posted the latest Card Not Present fraud figures for Australia. Technologically, CNP fraud is not a novel problem. We already have the tools and the cardholder habits to solve the CNP problem. We should look at the experience of skimming and carding, which was another tech problem that demanded a smart tech solution.

Card Not Present fraud is simply online carding.

A magnetic stripe card keeps the cardholder’s details as a string of ones and zeroes, stored in the clear, and presents that string to a POS terminal or ATM. It’s easy for a criminal to scan the ones and zeroes and copy them to a blank card.

In general terms, EMV or Chip-and-PIN cards work by encrypting those ones and zeros in the chip so they can only be correctly decoded by the terminal equipment. In reality the explanation is somewhat more complex, involving asymmetric cryptography, but for the purposes of explaining the parallel between skimming/carding and CNP fraud, we can skip the details. The salient point is that EMV cards prevent carding by using encryption inside the secure chip using keys that cannot be tampered with or substituted by an attacker.

As with mag stripe cards, conventional Card Not Present transactions transmit cleartext cardholder data, this time to a merchant server. On its own, a server cannot tell the difference between the original data and a copy, just as a POS terminal cannot tell an original bank issued cards from a criminal’s copy.

Lockstep Technologies was first to see the parallel between skimming/carding and CNP fraud. Our solution “Stepwise” uses the same cryptographic technology in chip cards that prevents carding to digitally sign transactions created at a browser or mobile device. Stepwise signatures can be verified at any merchant server, using standard built-in software libraries and a widely distributed “master key”.

I presented the Stepwise solution to the Payments Innovation stream at Cards & Payments Australia 2012 last week. The presentation is available here.

See also technical details here and a live demo on the ABC TV “New Inventors” program.