Lockstep

Mobile: +61 (0) 414 488 851
Email: swilson@lockstep.com.au

PKI as nature intended

Few technologies are so fundamental and yet so derided at the same time as public key infrastructure. PKI is widely thought of as obsolete or generically intrusive yet it is ubiquitous in SIM cards, SSL, chip and PIN cards, and cable TV. Technically, public key infrastructure Is a generic term for a management system for keys and certificates; there have always been endless ways to build PKIs (note the plural) for different communities, technologies, industries and outcomes. And yet “PKI” has all too often come to mean just one way of doing identity management. In fact, PKI doesn’t necessarily have anything to do with identity at all.

This blog is an edited version of a feature I once wrote for SC Magazine. It is timely in the present day to re-visit the principles that make for good PKI implementations and contextualise them in one of the most contemporary instances of PKI: the FIDO Alliance protocols for secure attribute management. In my view, FIDO realises PKI ‘as nature intended’.

“Re-thinking PKI”

In their earliest conceptions in the early-to-mid 1990s, digital certificates were proposed to authenticate nondescript transactions between parties who had never met. Certificates were construed as the sole means for people to authenticate one another. Most traditional PKI was formulated with no other context; the digital certificate was envisaged to be your all-purpose digital identity.

Orthodox PKI has come in for spirited criticism. From the early noughties, many commentators pointed to a stark paradox: online transaction volumes and values were increasing rapidly, in almost all cases without the help of overt PKI. Once thought to be essential, with its promise of "non repdudiation", PKI seemed anything but, even for significant financial transactions.

There were many practical problems in “big” centralised PKI models. The traditional proof of identity for general purpose certificates was intrusive; the legal agreements were complex and novel; and private key management was difficult for lay people. So the one-size-fits-all electronic passport failed to take off. But PKI's critics sometimes throw the baby out with the bathwater.
In the absence of any specific context for its application, “big” PKI emphasized proof of personal identity. Early certificate registration schemes co-opted identification benchmarks like that of the passport. Yet hardly any regular business transactions require parties to personally identify one another to passport standards.

”Electronic business cards”

Instead in business we deal with others routinely on the basis of their affiliations, agency relationships, professional credentials and so on. The requirement for orthodox PKI users to submit to strenuous personal identity checks over and above their established business credentials was a major obstacle in the adoption of digital certificates.

It turns out that the 'killer applications' for PKI overwhelmingly involve transactions with narrow contexts, predicated on specific credentials. The parties might not know each other personally, but invariably they recognize and anticipate each other's qualifications, as befitting their business relationship.

Successful PKI came to be characterized by closed communities of interest, prior out-of-band registration of members, and in many cases, special-purpose application software featuring additional layers of context, security and access controls.

So digital certificates are much more useful when implemented as application-specific 'electronic business cards,' than as one-size-fits-all electronic passports. And, by taking account of the special conditions that apply to different e-business processes, we have the opportunity to greatly simplify the registration processes, user experience and liability arrangements that go with PKI.

The real benefits of digital signatures

There is a range of potential advantages in using PKI, including its cryptographic strength and resistance to identity theft (when implemented with private keys in hardware). Many of its benefits are shared with other technologies, but at least two are unique to PKI.

First, digital signatures provide robust evidence of the origin and integrity of electronic transactions, persistent over time and over 'distance’ (that is, the separation of sender and receiver). This greatly simplifies audit logging, evidence collection and dispute resolution, and cuts the future cost of investigation and fraud. If a digitally signed document is archived and checked at a later date, the quality of the signature remains undiminished over many years, even if the public key certificate has long since expired. And if a digitally signed message is passed from one relying party to another and on to many more, passing through all manner of intermediate systems, everyone still receives an identical, verifiable signature code authenticating the original message.

Electronic evidence of the origin and integrity of a message can, of course, be provided by means other than a digital signature. For example, the authenticity of typical e-business transactions can usually be demonstrated after the fact via audit logs, which indicate how a given message was created and how it moved from one machine to another. However, the quality of audit logs is highly variable and it is costly to produce legally robust evidence from them. Audit logs are not always properly archived from every machine, they do not always directly evince data integrity, and they are not always readily available months or years after the event. They are rarely secure in themselves, and they usually need specialists to interpret and verify them. Digital signatures on the other hand make it vastly simpler to rewind transactions when required.

Secondly, digital signatures and certificates are machine readable, allowing the credentials or affiliations of the sender to be bound to the message and verified automatically on receipt, enabling totally paperless transacting. This is an important but often overlooked benefit of digital signatures. When processing a digital certificate chain, relying party software can automatically tell that:

    • the message has not been altered since it was originally created
    • the sender was authorized to launch the transaction, by virtue of credentials or other properties endorsed by a recognized Certificate Authority
    • the sender's credentials were valid at the time they sent the message; and
    • the authority which signed the certificate was fit to do so.

One reason we can forget about the importance of machine readability is that we have probably come to expect person-to-person email to be the archetypal PKI application, thanks to email being the classic example to illustrate PKI in action. There is an implicit suggestion in most PKI marketing and training that, in regular use, we should manually click on a digital signature icon, examine the certificate, check which CA issued it, read the policy qualifier, and so on. Yet the overwhelming experience of PKI in practice is that it suits special purpose and highly automated applications, where the usual receiver of signed transactions is in fact a computer.

Characterising good applications

Reviewing the basic benefits of digital signatures allows us to characterize the types of e-business applications that merit investment in PKI.

Applications for which digital signatures are a good fit tend to have reasonably high transaction volumes, fully automatic or straight-through processing, and multiple recipients or multiple intermediaries between sender and receiver. In addition, there may be significant risk of dispute or legal ramifications, necessitating high quality evidence to be retained over long periods of time. These include:

    • Tax returns
    • Customs reporting
    • E-health care
    • Financial trading
    • Insurance
    • Electronic conveyancing
    • Superannuation administration
    • Patent applications.

This view of the technology helps to explain why many first-generation applications of PKI were problematic. Retail internet banking is a well-known example of e-business which flourished without the need for digital certificates. A few banks did try to implement certificates, but generally found them difficult to use. Most later reverted to more conventional access control and backend security mechanisms.Yet with hindsight, retail funds transfer transactions did not have an urgent need for PKI, since they could make use of existing backend payment systems. Funds transfer is characterized by tightly closed arrangements, a single relying party, built-in limits on the size of each transaction, and near real-time settlement. A threat and risk assessment would show that access to internet banking can rest on simple password authentication, in exactly the same way as antecedent phone banking schemes.

Trading complexity for specificity

As discussed, orthodox PKI was formulated with the tacit assumption that there is no specific context for the transaction, so the digital certificate is the sole means for authenticating the sender. Consequently, the traditional schemes emphasized high standards of personal identity, exhaustive contracts and unusual legal devices like Relying Party Agreements. They also often resorted to arbitrary 'reliance limits,' which have little meaning for most of the applications listed on the previous page. Notoriously, traditional PKI requires users to read and understand certification practice statements (CPS).

All that overhead stemmed from not knowing what the general-purpose digital certificate was going to be used for. On the other hand, if particular digital certificates are constrained to defined applications, then the complexity surrounding their specific usage can be radically reduced.

The role of PKI in all contemporary 'killer applications' is fundamentally to help automate the online processing of electronic transactions between parties with well-defined credentials. This is in stark contrast to the way PKI has historically been portrayed, where strangers Alice and Bob use their digital certificates to authenticate context-free general messages, often presumed to be sent by email. In reality, serious business messages are never sent stranger-to-stranger with no context or cues as to the parties' legitimacy.

Using generic email is like sending a fax on plain paper. Instead, business messaging is usually highly structured. Parties have an expectation that only certain types of transactions are going to occur between them and they equip themselves accordingly (for instance, a health insurance office is not set up to handle tax returns). The sender is authorized to act in defined types of transactions by virtue of professional credentials, a relevant license, an affiliation with some authority, endorsement by their employer, and so on. And the receiver recognizes the source of those credentials. The sender and receiver typically use prescribed forms and/or special purpose application software with associated user agreements and license conditions, adding context and additional layers of security around the transaction.

PKI got smart

When PKI is used to help automate the online processing of transactions between parties in the context of an existing business relationship, we should expect the legal arrangements between the parties to still apply. For business applications where digital certificates are used to identify users in specific contexts, the question of legal liability should be vastly simpler than it is in the general purpose PKI scenario where the issuer does not know what the certificates might be used for.
The new vision for PKI means the technology and processes should be no more of a burden on the user than a bank card. Rather than imagine that all public key certificates are like general purpose electronic passports, we can deploy multiple, special purpose certificates, and treat them more like electronic business cards. A public key certificate issued on behalf of a community of business users and constrained to that community can thereby stand for any type of professional credential or affiliation.

We can now automate and embed the complex cryptography deeply into smart devices -- smartcards, smart phones, USB keys and so on -- so that all terms and conditions for use are application focused. As far as users are concerned, a smartcard can be deployed in exactly the same way as any magnetic stripe card, without any need to refer to - or be limited by - the complex technology contained within (see also Simpler PKI is on the cards). Any application-specific smartcard can be issued under rules and controls that are fit for their purpose, as determined by the community of users or an appropriate recognized authority. There is no need for any user to read a CPS. Communities can determine their own evidence-of-identity requirements for issuing cards, instead of externally imposed personal identity checks. Deregulating membership rules dramatically cuts the overheads traditionally associated with certificate registration.

Finally, if we constrain the use of certificates to particular applications then we can factor the intended usage into PKI accreditation processes. Accreditation could then allow for particular PKI scheme rules to govern liability. By 'black-boxing' each community's rules and arrangements, and empowering the community to implement processes that are fit for its purpose, the legal aspects of accreditation can be simplified, reducing one of the more significant cost components of the whole PKI exercise (having said that, it never ceases to amaze how many contemporary healthcare PKIs still cling onto face-to-face passport grade ID proofing as if that's the only way to do digital certificates).

Fast forward

The preceding piece is a lightly edited version of the article ”Rethinking PKI” that first appeared in Secure Computing Magazine in 2003. Now, over a decade later, we’re seeing the same principles realised by the FIDO Alliance.

The FIDO protocols U2F and UAF enable specific attributes of a user and their smart devices to be transmitted to a server. Inherent to the FIDO methods are digital certificates that confer attributes and not identity, relatively large numbers of private keys stored locally in the users’ devices (and without the users needing to be aware of them as such) and digital signatures automatically applied to protocol messages to bind the relevant attributes to the authentication exchanges.

Surely, this is how PKI should have been deployed all along.

Posted in Security, PKI, Internet, Identity

FIDO Alliance - Update

You can be forgiven if the FIDO Alliance is not on your radar screen. It was launched barely 18 months ago, to help solve the "password crisis" online, but it's already proven to be one of most influential security bodies yet.

The typical Internet user has dozens of accounts and passwords. Not only are they a pain in the arse, poor password practices are increasingly implicated in fraud and terrible misadventures like the recent "iCloud Hack" which exposed celebrities' personal details.

With so many of our assets, our business and our daily lives happening in cyberspace, we desperately need better ways to prove who we are online – and even more importantly, prove what we entitled to do there.

The FIDO Alliance is a new consortium of identity management vendors, product companies and service providers working on strong authentication standards. FIDO’s vision is to tap the powers of smart devices – smart phones today and wearables tomorrow – to log users on to online services more securely and more conveniently.

FIDO was founded by Lenovo, PayPal, and security technology companies AGNITiO, Nok Nok Labs and Validity Sensors, and launched in February 2013. Since then the Alliance has grown to over 130 members. Two new authentication standards have been published for peer review, half a dozen companies showcased FIDO-Ready solutions at the 2014 Consumer Electronic Show (CES) in Las Vegas, and PayPal has released its ground-breaking pay-by-fingerprint app for the Samsung Galaxy S5.

The FIDO Alliance includes technology heavyweights like Google, Lenovo, Microsoft and Samsung; payments giants Discover, MasterCard, PayPal and Visa; financial services companies such as Aetna, Bank of America and Goldman Sachs; and e-commerce players like Netflix and Salesforce.com. There are also a couple of dozen biometrics vendors, many leading Identity and Access Management (IDAM) solutions and services, and almost every cell phone SIM and smartcard supplier in the world.

I have been watching FIDO since its inception and reporting on it for Constellation Research. The third update in my series of research reports on FIDO is now available and can be downloaded here. The report looks in depth at what the Alliance has to offer vendors and end user communities, its critical success factors, and how and why this body is poised to shake up authentication like never before.

Posted in Constellation Research, Identity, Security, Smartcards

Safeguarding the pedigree of identifiers

The problem of identity takeover

The root cause of much identity theft and fraud today is the sad fact that customer reference numbers and personal identifiers are so easy to copy. Simple numerical data like bank account numbers and health IDs can be stolen from many different sources, and replayed in bogus trans-actions.

Our personal data nowadays is leaking more or less constantly, through breached databases, websites, online forms, call centres and so on, to such an extent that customer reference numbers on their own are no longer reliable. Privacy consequentially suffers because customers are required to assert their identity through circumstantial evidence, like name and address, birth date, mother’s maiden name and other pseudo secrets. All this data in turn is liable to be stolen and used against us, leading to spiralling identity fraud.

To restore the reliability of personal identifiers, we need to know their pedigree. We need to know that a presented number is genuine, that it originated from a trusted authority, it’s been stored safely by its owner, and it’s been presented with the owner’s consent.

"Notarising" personal data in chip devices

There are ways of issuing personal data to a smart chip device that prevent those data from being stolen, copied and claimed by anyone else. One way to do so is to encapsulate and notarise personal data in a unique digital certificate issued to a chip. Today, a great many personal devices routinely embody cryptographically suitable chips for this purpose, including smart phones, SIM cards, “Secure Elements”, smartcards and many wearable computers.

Consider an individual named Smith to whom Organisation A has issued a unique customer reference number N. If N is saved in ordinary computer memory or something like a magnetic stripe card, then it has no pedigree. Once the number N is presented by the cardholder in a transaction, it looks like any other number. To better safeguard N in a chip device, it can be sealed into a digital certificate, as follows:

1. generate a fresh private-public key pair inside Smith’s chip
2. export the public key
3. create a digital certificate around the public key, with an attribute corresponding to N
4. have the certificate signed by (or on behalf of) organisation A.

Pedigree Diagram 140901

The result of coordinating these processes and technologies is a logical triangle that inextricably binds cardholder Smith to their reference number N and to a specific personally controlled device. The certificate signed by organisation A attests to Smith’s ownership of both N and a particular key unique to the device. Keys generated inside the chip are retained internally, never divulged to outsiders. It is impossible to copy the private key to another device, so the triangle cannot be cloned, reproduced or counterfeited.

Note that this technique lies at the core of the EMV "Chip-and-PIN" system where the smart payment card digitally signs cardholder and transaction data, rendering it immune to replay, before sending it to the merchant terminal. See also my 2012 paper Calling for a uniform approach to card fraud, offline and on. Now we should generalise notarised personal data and digitally signed transactions beyond Card-Present payments into as much online business as possible.

Restoring privacy and consumer control

When Smith wants to present their personal number in an electronic transaction, instead of simply copying N out of memory (at which point it would lose its pedigree), Smith’s transaction software digitally signs the transaction using the certificate containing N. With standard security software, any third party can then verify that the transaction originated from a genuine chip holding the unique key certified by A as matching the number N.

Note that N doesn’t have to be a customer number or numeric identifier; it could be any personal data, such as a biometric template or a package of medical information like an allergy alert.

The capability to manage multiple key pairs and certificates, and to sign transactions with a nominated private key, is increasingly built into smart devices today. By narrowing down what you need to know about someone to a precise customer reference number or similar personal data item, we will reduce identity theft and fraud while radically improving privacy. This sort of privacy enhancing technology is the key to a safe Internet of Things, and fortunately now is widely available.

Posted in Smartcards, Security, PKI, Payments, Identity, Fraud, Biometrics

BlackBerry Security Summit, 29 July 2014

Summary: BlackBerry is poised for a fresh and well differentiated play in the Internet of Things, with its combination of handset hardware security, its uniquely rated QNX operating system kernel, and its experience with the FIDO device authentication protocols.

To put it plainly, BlackBerry is not cool.

And neither is security.

But maybe two wrongs can make a right, in terms of a compelling story. BlackBerry's security story has always been strong, it's getting stronger, and it could save them.

Today I attended the BlackBerry Security Summit in New York City (Disclosure: my travel and accommodation were paid by BlackBerry). The event was announced very recently; none of my colleagues had heard of it. So what was the compelling need to put on a security show in New York? It turned out to be the 9:00am announcement that BlackBerry is acquiring the German voice security specialists Secusmart. BlackBerry and Secusmart have worked together for a long time; their stated aim is to put a real secure phone in the "hand of every President and every Chancellor".

Secusmart CEO Hans-Christoph Quelle is a forceful champion of voice security; in this age of evidently routine spying by state and competitors alike, there is enormous demand building for counter-surveillance in telephony and messaging. Secusmart is also responsible for the highly rated Micro SD cards that BlackBerry proudly use as removable security modules in their handsets. And this is where the SecuSmart tie-up really resonates for me. It comes hot on the heels of last week's Cloud Security Summit, where there was so much support for personal Hardware Security Modules (HSMs), be they Micro SD cards, USB keys, NFC Secure Elements, the good old "Trusted Platform Module" (TPM) or any number of proprietary chip sets.

Today's event also showcased BlackBerry's QNX division (acquired in 2010) and its secure operating system. CEO John Chen reckons that the software in 50% of connected cars runs on the QNX OS (and in high reliability settings like power stations, wind turbines and even gaming machines, the penetration is even higher). And so he is positioning BlackBerry as a major player in the Internet of Things.

We heard from QNX founder Dan Dodge about the elegance of their system. At just 100,000 lines of code, Dodge stressed that his team knows the software inside-out. There is not a single line of code in their OS that QNX did not write themselves. In contrast, such mastery is utterly impossible in the 15,000,000 lines that make up Linux or the estimated 50-70 million lines in Windows. It happens that I've recently lamented the parlous state of software quality and the need to return to first principles security. So I am on Dan Dodge's wavelength.

BlackBerry's security people had a little bit to say about identity as well, and apparently more's to come. For now, they are flagging that with 250 million customers in their messaging system, BBM represents "one of the biggest identity systems in the world". And as such the company does plan to "federate" it somehow. They reminded us at the same time of the BlackBerry Cloud slated for launch in December.

Going forward, the importance of strong, physical Two Factor Authentication for accessing the cloud is almost a given now. And the smartphone is fast becoming the predominant access mechanism, so the combination of secure elements, handsets and high security infrastructure is potent.

There's a lot that BlackBerry is keeping close to its chest, but for me one extant piece of the IoT puzzle was conspicuously absent today: the role of the FIDO Alliance protocols. After all, BlackBerry has been a FIDO Board Member for a long time. It seems to me that FIDO's protocols for exchanging verified authentication signals and information about devices should be an important element of BlackBerry's play in both its software infrastructure and its devices.

In closing, I'll revisit the very first thing we heard at today's event. It was a video testimonial, telling us "If you need nuclear security, you need BlackBerry". As I said, security really isn't cool. Jazzing up the company's ability to deliver "nuclear" grade to demanding clients is actually not the right message. Security in the Internet of Things -- and therefore in everyday life -- may turn out to be just as important.

We basically know that nuclear power plants are inherently risky; we know that planes will occasionally fall out of the sky. Paradoxically, the community has a reasonable appetite for risk and failures in very complex systems like those. Individually and/or collectively we have decided we just can't live without electricity and travel and so we've come to settle on a roughly acceptable finite cost in terms of failures. But when the mundanities of life go digital, the tolerance of failure will drop. When our cars and thermostats and light switches are connected to the Internet, and when a bug or a script kiddie's stunt can soon send whole neighbourhoods into a spin, consumers won't stand for it.

So the very best security we can currently engineer is in fact going to be necessary at scale for smart appliances, wearables, connected homes, smart meters and networked cars. We need a different gauge for this type of security, and it's going to be very tough to engineer and deploy economically. But right now, with its deep understanding of dependable OS's and commitment to high quality device hardware, it seems to me BlackBerry has a head-start in the Internet of Things.

Posted in Software engineering, Security, Identity, Cloud

Postcard from Monterey 3 #CISmcc

Days 3 and 4 at CIS Monterey.

Andre Durand's Keynote

The main sessions at the Cloud Identity Summit (namely days three and four overall) kicked off with keynotes from Ping Identity chief Andre Durand, New Zealand technology commentator Ben Kepes, and Ping Technical Director Mark Diodati. I'd like to concentrate on Andre's speech for it was truly fresh.

Andre has an infectious enthusiasm for identity, and is a magnificent host to boot. As I recall, his CIS keynote last year in Napa was pretty simply a dedication to the industry he loves. Not that there's anything wrong with that. But this year he went a whole lot further, with a rich deep dive into some things we take for granted: identity tokens and the multitude of security domains that bound our daily lives.

It's famously been said that "identity is the new perimeter" and Andre says that view informs all they do at Ping. It's easy I think to read that slogan to mean security priorities (and careers) are moving from firewalls to IDAM, but the meaning runs deeper. Identity is meaningless without context, and each context has an edge that defines it. Identity is largely about boundaries, and closure.

  • MyPOV and as an aside: The move to "open" identities which has powered IDAM for a over a decade is subject to natural limits that arise precisely because identities are perimeters. All identities are closed in some way. My identity as an employee means nothing beyond the business activities of my employer; my identity as an American Express Cardholder has no currency at stores that don't accept Amex; my identity as a Qantas OneWorld frequent flyer gets me nowhere at United Airlines (nor very far at American, much to my surprise). We discovered years ago that PKI works well in closed communities like government, pharmaceutical supply chains and the GSM network, but that general purpose identity certificates are hopeless. So we would do well to appreciate that "open" cross-domain identity management is actually a special case and that closed IDAM systems are the general case.

Andre reviewed the amazing zoo of hardware tokens we use from day to day. He gave scores of examples, including driver licenses of course but license plates too; house key, car key, garage opener, office key; the insignias of soldiers and law enforcement officers; airline tickets, luggage tags and boarding passes; the stamps on the arms of nightclub patrons and the increasingly sophisticated bracelets of theme park customers; and tattoos. Especially vivid was Andre's account of how his little girl on arriving at CIS during the set-up was not much concerned with all the potential playthings but was utterly rapt to get her ID badge, for it made her "official".

IMG 5493 Ping Durand CISmcc Tokens make us official

Tokens indeed have always had talismanic powers.

Then we were given a fly-on-the-wall slide show of how Andre typically starts his day. By 7:30am he has accessed half a dozen token-controlled physical security zones, from his home and garage, through the road system, the car park, the office building, the elevator, the company offices and his own corner office. And he hasn't even logged into cyberspace yet! He left unsaid whether or not all these domains might be "federated".

  • MyPOV: Isn't it curious that we never seem to beg for 'Single Sign On' of our physical keys and spaces? I suspect we know instinctively that one-key-fits-all would be ridiculously expensive to retrofit and would require fantastical cooperation between physical property controllers. We only try to federate virtual domains because the most common "keys" - passwords - suck, and because we tend to underestimate the the cost of cooperation amongst digital RPs.
IMG 5493 Ping Durand CISmcc Tokens properties

Tokens are, as Andre reminded us, on hand when you need them, easy to use, easy to revoke, and hard to steal (at least without being noticed). And they're non-promiscuous in respect of the personal information they disclose about their bearers. It's a wondrous set of properties, which we should perhaps be more conscious of in our work. And tokens can be used off-line.

  • MyPOV: The point about tokens working offline is paramount. It's a largely forgotten value. Andre's compelling take on tokens makes for a welcome contrast to the rarely questioned predominance of the cloud. Managing and resolving identity in the cloud complicates architectures, concentrates more of our personal data, and puts privacy at risk (for it's harder to unweave all the traditionally independent tracks of our lives).

In closing, Andre asked a rhetorical question which was probably forming in most attendees' minds: What is the ultimate token? His answer had a nice twist. I thought he'd say it's the mobile device. With so much value now remote, multi-factor cloud access control is crucial; the smart phone is the cloud control du jour and could easily become the paragon of tokens. But no, Andre considers that a group of IDAM standards could be the future "universal token" insofar as they beget interoperability and portability.

He said of the whole IDAM industry "together we are networking identity". That's a lovely sentiment and I would never wish to spoil Andre Durand's distinctive inclusion, but on that point technically he's wrong, for really we are networking attributes! More on that below and in my previous #CISmcc diary notes.

The identity family tree

My own CISmcc talk came at the end of Day 4. I think it was well received; the tweet stream was certainly keen and picked up the points I most wanted to make. Attendance was great, for which I should probably thank Andre Durand, because he staged the Closing Beach Party straight afterwards.

I'll post an annotated copy of my slides shortly. In brief I presented my research on the evolution of digital identity. There are plenty of examples of how identity technologies and identification processes have improved over time, with steadily stronger processes, regulations and authenticators. It's fascinating too how industries adopt authentication features from one another. Internet banking for example took the one-time password fob from late 90's technology companies, and the Australian PKI de facto proof-of-identity rules were inspired by the standard "100 point check" mandated for account origination.

Steve Wilson CIS2014 Authentication Family Tree  Bank identity evolves blog CISmcc

Clearly identity techniques shift continuously. What I want to do is systematise these shifts under a single unifying "phylogeny"; that is, a rigorously worked-out family tree. I once used the metaphor of a family tree in a training course to help people organise their thinking about authentication, but the inter-relationships between techniques was guesswork on my part. Now I'm curious if there is a real family tree that can explain the profusion of identities we have been working so long on simplifying, often to little avail.

Steve Wilson CIS2014 Authentication Family Tree (1 0) CISmcc CIS Cloud Identity

True Darwinian evolution requires there to be replicators that correspond to the heritable traits. Evolution results when the proportions of those replicators in the "gene pool" drift over generations as survival pressures in the environment filter beneficial traits. The definition of Digital Identity as a set of claims or attributes provides a starting point for a Darwinian treatment. I observe that identity attributes are like "Memes" - the inherited units of culture first proposed by biologist Richard Dawkins. In my research I am trying to define sets of available "characters" corresponding to technological, business and regulatory features of our diverse identities, and I'm experimenting with phylogenetic modelling programs to see what patterns emerge in sets of character traits shared by those identities.

Steve Wilson CIS2014 Authentication Family Tree  Memome Characters blog CISmcc

So what? A rigorous scientific model for identity evolution would have many benefits. First and foremost it would have explanatory power. I do not believe that as an industry we have a satisfactory explanation for the failure of such apparently good ideas as Information Cards. Nor for promising federation projects like the Australian banking sector's "Trust Centre" and "MAMBO" lifetime portable account number. I reckon we have been "over federating" identity; my hunch is that identities have evolved to fit particular niches in the business ecosystem to such an extent that taking a student ID for instance and using it to log on to a bank is like dropping a saltwater fish into a freshwater tank. A stronger understanding of how attributes are organically interrelated would help us better plan federated identity, and to even do "memetic engineering" of the attributes we really want to re-use between applications and contexts.

If a phylogenetic tree can be revealed, it would confirm the 'secret lives' of attributes and thereby lend more legitimacy to the Attributes Push (which coincidentally some of us first spotted at a previous CIS, in 2013). It would also provide evidence that identification risks in local environments are why identities have come to be the way they are. In turn, we could pay more respect to authentication's idiosyncrasies, instead of trying to pigeonhole them into four rigid Levels of Assurance. At Sunday's NSTIC session, CTO Paul Grassi floated the idea of getting rid of LOAs. That would be a bold move of course; it could be helped along by a new fresh focus to attributes. And of course we kept hearing throughout CIS Monterey about the FIDO Alliance with its devotion to authentication through verified device attributes, and its strategy to stay away from the abstract business of identities.

Steve Wilson CIS2014 Authentication Family Tree  FIDO blog CISmcc

Reflections on CIS 2014

I spoke with many people at CIS about what makes this event so different. There's the wonderful family program of course, and the atmosphere that creates. And there's the paradoxical collegiality. Ping has always done a marvelous job of collaborating in various standards groups, and likewise with its conference, Ping's people work hard to create a professional, non-competitive environment. There are a few notable absentees of course but all the exhibitors and speakers I spoke to - including Ping's direct competitors - endorsed CIS as a safe and important place to participate in the identity community, and to do business.

But as a researcher and analyst, the Cloud Identity Summit is where I think you can see the future. People report hearing about things for the first time at a CIS, only to find those things coming true a year or two later. It's because there are so many influencers here.

Last year one example was the Attributes Push. This year, the onus on Attributes has become entirely mainstream. For example, the NSTIC pilot partner ID.me (a start-up business focused on improving veterans' access to online discounts through improved verification of entitlements) talks proudly of their ability to convey attributes and reduce the exposure of identity. And Paul Grassi proposes much more focus on Attributes from 2015.

Another example is the "Authorization Agent" (AZA) proposed for SSO in mobile platforms, which was brand new when Paul Madsen presented it at CIS Napa in 2013. Twelve months on, AZA has broadened into the Native Apps (NAPPS) OpenID Working Group.

Then there are the things that are nearly completely normalised. Take mobile devices. They figured in just about every CISmcc presentation, but were rarely called out. Mobile is simply the way things are now.

Hardware stores

So while the mobile form factor is taken for granted, the cryptographic goodies now standard in most handsets, and increasingly embedded in smart things and wearables, got a whole lot of express attention at CISmcc. I've already made much of Andre Durand's keynote on tokens. It was the same throughout the event.

    • There was a session on hybrid Physical and Logical Access Control Systems (PACS-LACS) featuring the US Government's PIV-I smartcard standard and the major ongoing R&D on that platform sponsored by DHS.
    • Companies like SecureKey are devoted to hardware-based keys, increasingly embedded in "street IDs" like driver licenses, and are working with numerous players deep in the SIM and smartcard supply chains.
    • The FIDO Alliance is fundamentally about hardware based identity security measures, leveraging embedded key pairs to attest to the pedigree of authenticator models and the attributes that they transmit on behalf of their verified users. FIDO promises to open up the latent authentication power of many 100s of millions of devices already featuring Secure Elements of one kind or another. FIDO realises PKI the way nature intended all along.
    • The good old concept of "What You See Is What You Sign" (WYSIWYS) is making a comeback, with mobile platform players appreciating that users of smartphones need reliable cues in the UX as to the integrity of transaction data served up in their rich operating systems. Clearly some exciting R&D lies ahead.
    • In a world of formal standards, we should also acknowledge the informal standards around us - the benchmarks and conventions that represent the 'real way' to do things. Hardware based security is taken increasingly for granted. The FIDO protocols are based on key pairs that people just seem to assume (correctly) will be generated in the compliant devices during registration. And Apple with its iTouch has helped to 'train' end users that biometrics templates must never leave the safety of a controlled hardware end point. FIDO of course makes that a hard standard.

What's next?

In my view, the Cloud Identity Summit is the only not-to-be missed event on the IDAM calendar. So long may it continue. And if CIS is where you go to see the future, what's next?

    • Judging by CISmcc, I reckon we're going to see entire sessions next year devoted to Continuous Authentication, in which signals are collected from wearables and the Internet of Things at large, to gain insights into the state of the user at every important juncture.
    • With the disciplined separation of abstract identities from concrete attributes, we're going to need an Digital Identity Stack for reference. FIDO's pyramid is on the right track, but it needs some work. I'm not sure the pyramid is the right visualisation; for one thing it evokes Maslow's Hierarchy of Needs in which the pinnacle corresponds to luxuries not essentials!
    • Momentum will grow around Relationships. Kantara's new Identity Relationship Management (IRM) WG was talked about in the CISmcc corridors. I am not sure we're all using the word in the same way, but it's a great trend, for Digital Identity is only really a means to an end, and it's the relationships they support that make identities important.

So there's much to look forward to!

See you again next year (I hope) in Monterey!

Posted in Smartcards, PKI, Language, Identity, Federated Identity, Cloud

Postcard from Monterey 2 #CISmcc

Second Day Reflections from CIS Monterey.

Follow along on Twitter at #CISmcc (for the Monterey Conference Centre).

The Attributes push

At CIS 2013 in Napa a year ago, several of us sensed a critical shift in focus amongst the identerati - from identity to attributes. OIX launched the Attributes Exchange Network (AXN) architecture, important commentators like Andrew Nash were saying, 'hey, attributes are more interesting than identity', and my own #CISnapa talk went so far as to argue we should forget about identity altogether. There was a change in the air, but still, it was all pretty theoretical.

Twelve months on, and the Attributes push has become entirely practical. If there was a Word Cloud for the NSTIC session, my hunch is that "attributes" would dominate over "identity". Several live NSTIC pilots are all about the Attributes.

ID.me is a new company started by US military veterans, with the aim of improving access for the veterans community to discounted goods and services and other entitlements. Founders Matt Thompson and Blake Hall are not identerati -- they're entirely focused on improving online access for their constituents to a big and growing range of retailers and services, and offer a choice of credentials for proving veterans bona fides. It's central to the ID.me model that users reveal as little as possible about their personal identities, while having their veterans' status and entitlements established securely and privately.

Another NSTIC pilot Relying Party is the financial service sector infrastructure provider Broadridge. Adrian Chernoff, VP for Digital Strategy, gave a compelling account of the need to change business models to take maximum advantage of digital identity. Broadridge recently announced a JV with Pitney Bowes called Inlet, which will enable the secure sharing of discrete and validated attributes - like name, address and social security number - in an NSTIC compliant architecture.

Mind Altering

Yesterday I said in my #CISmcc diary that I hoped to change my mind about something here, and half way through Day 2, I was delighted it was already happening. I've got a new attitude about NSTIC.

Over the past six months, I had come to fear NSTIC had lost its way. It's hard to judge totally accurately when lurking on the webcast from Sydney (at 4:00am) but the last plenary seemed pedestrian to me. And I'm afraid to say that some NSTIC committees have got a little testy. But today's NSTIC session here was a turning point. Not only are there a number or truly exciting pilots showing real progress, but Jeremy Grant has credible plans for improving accountability and momentum, and the new technology lead Paul Grassi is thinking outside the box and speaking out of school. The whole program seems fresh all over again.

In a packed presentation, Grassi impressed me enormously on a number of points:

  • Firstly, he advocates a pragmatic NSTIC-focused extension of the old US government Authentication Guide NIST SP 800-63. Rather than a formal revision, a companion document might be most realistic. Along the way, Grassi really nailed an issue which we identity professionals need to talk about more: language. He said that there are words in 800-63 that are "never used anywhere else in systems development". No wonder, as he says, it's still "hard to implement identity"!
  • Incidentally I chatted some more with Andrew Hughes about language; he is passionate about terms, and highlights that our term "Relying Party" is an especially terrible distraction for Service Providers whose reason-for-being has nothing to do with "relying" on anyone!
  • Secondly, Paul Grassi wants to "get very aggressive on attributes", including emphasis on practical measurement (since that's really what NIST is all about). I don't think I need to say anything more about that than Bravo!
  • And thirdly, Grassi asked "What if we got rid of LOAs?!". This kind of iconoclastic thinking is overdue, and was floated as part of a broad push to revamp the way government's orthodox thinking on Identity Assurance is translated to the business world. Grassi and Grant don't say LOAs can or should be abandoned by government, but they do see that shoving the rounded business concepts of identity into government's square hole has not done anyone much credit.

Just one small part of NSTIC annoyed me today: the persistent idea that federation hubs are inherently simpler than one-to-one authentication. They showed the following classic sort of 'before and after' shots, where it seems self-evident that a hub (here the Federal Cloud Credential Exchange FCCX) reduces complexity. The reality is that multilateral brokered arrangements between RPs and IdPs are far more complex than simple bilateral direct contracts. And moreover, the new forms of agreements are novel and untested in real world business. The time and cost and unpredictability of working out these new arrangements is not properly accounted for and has often been fatal to identity federations.

IMG 5412 BEFORE cropped
IMG 5413 AFTER cropped


The dog barks and this time the caravan turns around

One of the top talking points at #CISmcc has of course been FIDO. The FIDO Alliance goes from strength to strength; we heard they have over 130 members now (remember it started with four or five less than 18 months ago). On Saturday afternoon there was a packed-out FIDO show case with six vendors showing real FIDO-ready products. And today there was a three hour deep dive into the two flagship FIDO protocols UAF (which enables better sharing of strong authentication signals such that passwords may be eliminated) and U2F (which standardises and strengthens Two Factor Authentication).

FIDO's marketing messages are improving all the time, thanks to a special focus on strategic marketing which was given its own working group. In particular, the Alliance is steadily clarifying the distinction between identity and authentication, and sticking adamantly to the latter. In other words, FIDO is really all about the attributes. FIDO leaves identity as a problem to be addressed further up the stack, and dedicates itself to strengthening the authentication signal sent from end-point devices to servers.

The protocol tutorials were excellent, going into detail about how "Attestation Certificates" are used to convey the qualities and attributes of authentication hardware (such as device model, biometric modality, security certifications, elapsed time since last user verification etc) thus enabling nice fine-grained policy enforcement on the RP side. To my mind, UAF and U2F show how nature intended PKI to have been used all along!

Some confusion remains as to why FIDO has two protocols. I heard some quiet calls for UAF and U2F to converge, yet that would seem to put the elegance of U2F at risk. And it's noteworthy that U2F is being taken beyond the original one time password 2FA, with at least one biometric vendor at the showcase claiming to use it instead of the heavier UAF.

Surprising use cases

Finally, today brought more fresh use cases from cohorts of users we socially privileged identity engineers for the most part rarely think about. Another NSTIC pilot partner is AARP, a membership organization providing "information, advocacy and service" to older people, retirees and other special needs groups. AARP's Jim Barnett gave a compelling presentation on the need to extend from the classic "free" business models of Internet services, to new economically sustainable approaches that properly protect personal information. Barnett stressed that "free" has been great and 'we wouldn't be where we are today without it' but it's just not going to work for health records for example. And identity is central to that.

There's so much more I could report if I had time. But I need to get some sleep before another packed day. All this changing my mind is exhausting.

Cheers again from Monterey.

Posted in Security, Privacy, PKI, Language, Identity, Federated Identity, e-health

Postcard from Monterey #CISmcc

First Day Reflections from CIS Monterey.

Follow along on Twitter at #CISmcc (for the Monterey Conference Centre).

The Cloud Identity Summit really is the top event on the identity calendar. The calibre of the speakers, the relevance and currency of the material, the depth and breadth of the cohort, and the international spread are all unsurpassed. It's been great to meet old cyber-friends in "XYZ Space" at last -- like Emma Lindley from the UK and Lance Peterman. And to catch up with such talented folks like Steffen Sorensen from New Zealand once again.

A day or two before, Ian Glazer of Salesforce asked in a tweet what we were expecting to get out of CIS. And I replied that I hoped to change my mind about something. It's unnerving to have your understanding and assumptions challenged by the best in the field ... OK, sometimes it's outright embarrassing ... but that's what these events are all about. A very wise lawyer said to me once, around 1999 at the dawn of e-commerce, that he had changed his mind about authentication a few times up to that point, and that he fully expected to change his mind again and again.

I spent most of Saturday in Open Identity Foundation workshops. OIDF chair Don Thibeau enthusiastically stressed two new(ish) initiatives: Mobile Connect in conjunction with the mobile carrier trade association GSM Association @GSMA, and HIE Connect for the health sector. For the uninitiated, HIE means Health Information Exchange, namely a hub for sharing structured e-health records among hospitals, doctors, pharmacists, labs, e-health records services, allied health providers, insurers, drug & device companies, researchers and carers; for the initiated, we know there is some language somewhere in which the letters H.I.E. stand for "Not My Lifetime".

But seriously, one of the best (and pleasantly surprising) things about HIE Connect as the OIDF folks tell it, is the way its leaders unflinchingly take for granted the importance of privacy in the exchange of patient health records. Because honestly, privacy is not a given in e-health. There are champions on the new frontiers like genomics that actually say privacy may not be in the interests of the patients (or more's the point, the genomics businesses). And too many engineers in my opinion still struggle with privacy as something they can effect. So it's great -- and believe me, really not obvious -- to hear the HIE Connects folks -- including Debbie Bucci from the US Dept of Health and Human Services, and Justin Richer of Mitre and MIT -- dealing with it head-on. There is a compelling fit for the OAUTH and OIDC protocols here, with their ability to manage discrete pieces of information about users (patients) and to permission them all separately. Having said that, Don and I agree that e-health records permissioning and consent is one of the great UI/UX challenges of our time.

Justin also highlighted that the RESTful patterns emerging for fine-grained permissions management in healthcare are not confined to healthcare. Debbie added that the ability to query rare events without undoing privacy is also going to be a core defining challenge in the Internet of Things.

MyPOV: We may well see tremendous use cases for the fruits of HIE Exchange before they're adopted in healthcare!

In the afternoon, we heard from Canadian and British projects that have been working with the Open Identity Exchange (OIX) program now for a few years each.

Emma Lindley presented the work they've done in the UK Identity Assurance Program (IDAP) with social security entitlements recipients. These are not always the first types of users we think of for sophisticated IDAM functions, but in Britain, local councils see enormous efficiency dividends from speeding up the issuance of eg disabled parking permits, not to mention reducing imposters, which cost money and lead to so much resentment of the well deserved. Emma said one Attributes Exchange beta project reduced the time taken to get a 'Blue Badge' permit from 10 days to 10 minutes. She went on to describe the new "Digital Sources of Trust" initiative which promises to reconnect under-banked and under-documented sections of society with mainstream financial services. Emma told me the much-abused word "transformational" really does apply here.

MyPOV: The Digital Divide is an important issue for me, and I love to see leading edge IDAM technologies and business processes being used to do something about it -- and relatively quickly.

Then Andre Boysen of SecureKey led a discussion of the Canadian identity ecosystem, which he said has stabilised nicely around four players: Federal Government, Provincial Govt, Banks and Carriers. Lots of operations and infrastructure precedents from the payments industry have carried over.
Andre calls the smart driver license of British Columbia the convergence of "street identity and digital identity".

MyPOV: That's great news - and yet comparable jurisdictions like Australia and the USA still struggle to join governments and banks and carriers in an effective identity synthesis without creating great privacy and commercial anxieties. All three cultures are similarly allergic to identity cards, but only in Canada have they managed to supplement drivers licenses with digital identities with relatively high community acceptance. In nearly a decade, Australia has been at a standstill in its national understanding of smartcards and privacy.

For mine, the CIS Quote of the Day came from Scott Rice of the Open ID Foundation. We all know the stark problem in our industry of the under-representation of Relying Parties in the grand federated identity projects. IdPs and carriers so dominate IDAM. Scott asked us to imagine a situation where "The auto industry was driven by steel makers". Governments wouldn't put up with that for long.

Can someone give us the figures? I wonder if Identity and Access Management is already more economically ore important than cars?!

Cheers from Monterey, Day 1.

Posted in Smartcards, Security, Identity, Federated Identity, e-health, Cloud, Biometrics, Big Data

FIDO Alliance goes from strength to strength

With a bunch of exciting new members joining up on the eve of the RSA Conference, the FIDO Alliance is going from strength to strength. And they've just published the first public review drafts of their core "universal authentication" protocols.

An update to my Constellation Research report on FIDO is now available. Here's a preview.

The Go-To standards alliance in protocols for modern identity management

The FIDO Alliance – for Fast IDentity Online – is a fresh, fast growing consortium of security vendors and end users working out a new suite of protocols and standards to connect authentication endpoints to services. With an unusual degree of clarity in this field, FIDO envisages simply "doing for authentication what Ethernet did for networking".

Launched in early 2013, the FIDO Alliance has already grown to nearly 100 members, amongst which are heavyweights like Google, Lenovo, MasterCard, Microsoft and PayPal as well as a couple of dozen biometrics vendors, many of the leading Identity and Access Management solutions and service providers and several global players in the smartcard supply chain.

FIDO is different. The typical hackneyed elevator pitch in Identity and Access Management promises to "fix the password crisis" – usually by changing the way business is done. Most IDAM initiatives unwittingly convert clear-cut technology problems into open-ended business transformation problems. In contrast, FIDO's mission is refreshingly clear cut: it seeks to make strong authentication interoperable between devices and servers. When users have activated FIDO-compliant endpoints, reliable fine-grained information about their client environment becomes readily discoverable by any servers, which can then make access control decisions, each according to its own security policy.

With its focus, pragmatism and critical mass, FIDO is justifiably today's go-to authentication standards effort.

In February 2014, the FIDO Alliance announced the release of its first two protocol drafts, and a clutch of new members including powerful players in financial services, the cloud and e-commerce. Constellation notes in particular the addition to the board of security leader RSA and another major payments card, Discover. And FIDO continues to strengthen its vital “Relying Party” (service provider) representation with the appearance of Aetna, Goldman Sachs, Netflix and Salesforce.com.

It's time we fixed the Authentication plumbing

In my view, the best thing about FIDO is that it is not about federated identity but instead it operates one layer down in what we call the digital identity stack. This might seem to run against the IDAM tide, but it's refreshing, and it may help the FIDO Alliance sidestep the quagmire of identity policy mapping and legal complexities. FIDO is not really about the vexed general issue of "identity" at all! Instead, it's about low level authentication protocols; that is, the plumbing.

The FIDO Alliance sets out its mission as follows:

  • Change the nature of online authentication by:
    • Developing technical specifications that define an open, scalable, interoperable set of mechanisms that reduce the reliance on passwords to authenticate users.
    • Operating industry programs to help ensure successful worldwide adoption of the Specifications.
    • Submitting mature technical Specification(s) to recognized standards development organization(s) for formal standardization.

The engineering problem underlying Federated Identity is actually pretty simple: if we want to have a choice of high-grade physical, multi-factor "keys" used to access remote services, how do we convey reliable cues to those services about the type of key being used and the individual who's said to be using it? If we can solve that problem, then service providers and Relying Parties can sort out for themselves precisely what they need to know about the users, sufficient to identify and authenticate them.

All of these leaves the 'I' in the acronym "FIDO" a little contradictory. It's such a cute name (alluding of course to the Internet dog) that it's unlikely to change. Instead, I overheard that the acronym might go the way of "KFC" where eventually it is no longer spelled out and just becomes a word in and of itself.

FIDO Alliance Board Members

  • Blackberry
  • CrucialTec (manufactures innovative user input devices for mobiles)
  • Discover Card
  • Google
  • Lenovo
  • MasterCard
  • Microsoft
  • Nok Nok Labs (a specialist authentication server software company)
  • NXP Semiconductors (a global supplier of card chips, SIMs and Secure Elements)
  • Oberthur Technologies (a multinational smartcard and mobility solutions provider)
  • PayPal
  • RSA
  • Synaptics (fingerprint biometrics)
  • Yubico (the developer of the YubiKey PKI enabled 2FA token).

FIDO Alliance Board Sponsor Level Members

  • Aetna
  • ARM
  • AGNITiO
  • Dell
  • Discretix
  • Entersekt
  • EyeLock Inc.
  • Fingerprint Cards AB
  • FingerQ
  • Goldman Sachs
  • IdentityX
  • IDEX ASA
  • Infineon
  • Kili
  • Netflix
  • Next Biometrics Group
  • Oesterreichische Staatsdruckerei GmbH
  • Ping Identity
  • SafeNet
  • Salesforce
  • SecureKey
  • Sonavation
  • STMicroelectronics
  • Wave Systems

Stay tuned for the updated Constellation Research report.

Posted in Smartcards, Security, Identity, Federated Identity, Constellation Research, Biometrics

The Snapchat data breach

Yesterday it was reported by The Verge that anonymous hackers have accessed Snapchat's user database and posted 4.6 million user names and phone numbers. In an apparent effort to soften the blow, two digits of the phone numbers were redacted. So we might assume this is a "white hat" exercise, designed to shame Snapchat into improving their security. Indeed, a few days ago Snapchat themselves said they had been warned of vulnerabilities in their APIs that would allow a mass upload of user records.

The response of many has been, well, so what? Some people have casually likened Snapchat's list to a public White Pages; others have played it down as "just email addresses".

Let's look more closely. The leaked list was not in fact public names and phone numbers; it was user names and phone numbers. User names might often be email addresses but these are typically aliases; people frequently choose email addresses that reveal little or nothing of their real world identity. We should assume there is intent in an obscure email address for the individual to remain secret.

Identity theft has become a highly organised criminal enterprise. Crime gangs patiently acquire multiple data sets over many months, sometimes years, gradually piecing together detailed personal profiles. It's been shown time and time again by privacy researchers (perhaps most notably Latanya Sweeney) that re-identification is enabled by linking diverse data sets. And for this purpose, email addresses and phone numbers are superbly valuable indices for correlating an individual's various records. Your email address is common across most of your social media registrations. And your phone number allows your real name and street address to be looked up from reverse White Pages. So the Snapchat breach could be used to join aliases or email addresses to real names and addresses via the phone numbers. For a social engineering attack on a call centre -- or even to open a new bank account -- an identity thief can go an awful long way with real name, street address, email address and phone number.

I was asked in an interview to compare the theft of stolen phone numbers with social security numbers. I surprised the interviewer when I said phone numbers are probably even more valuable to the highly organised ID thief, for they can be used to index names in public directories, and to link different data sets, in ways that SSNs (or credit card numbers for that matter) cannot.

So let us start to treat all personal inormation -- especially when aggregated in bulk -- more seriously! And let's be more cautious in the way we categorise personal or Personally Identifiable Information (PII).

Importantly, most regulatory definitions of PII already embody the proper degree of caution. Look carefully at the US government definition of Personally Identifiable Information:

  • information that can be used to distinguish or trace an individual’s identity, either alone or when combined with other personal or identifying information that is linked or linkable to a specific individual (underline added).

This means that items of data can constitute PII if other data can be combined to identify the person concerned. That is, the fragments are regarded as PII even if it is the whole that does the identifying.

And remember that the middle I in PII stands for Identifiable, and not, as many people presume, Identifying. To meet the definition of PII, data need not uniquely identify a person, it merely needs to be directly or indirectly identifiable with a person. And this is how it should be when we heed the way information technologies enable identification through linkages.

Almost anywhere else in the world, data stores like Snapchat's would automatically fall under data protection and information privacy laws; regulators would take a close look at whether the company had complied with the OECD Privacy Principles, and whether Snapchat's security measures were fit for purpose given the PII concerned. But in the USA, companies and commentators alike still have trouble working out how serious these breaches are. Each new breach is treated in an ad hoc manner, often with people finessing the difference between credit card numbers -- as in the recent Target breach -- and "mere" email addresses like those in the Snapchat and Epsilon episodes.

Surely the time has come to simply give proper regulatory protection to all PII.

Posted in Social Networking, Social Media, Security, Privacy, Identity, Fraud, Big Data

My analysis of the FIDO Alliance

I've written a new Constellation Research "Quark" Report on the FIDO Alliance ("Fast Identity Online"), a fresh, fast growing consortium working out protocols and standards to connect authentication endpoints to services.

With a degree of clarity that is uncommon in Identity and Access Management (IDAM), FIDO envisages simply "doing for authentication what Ethernet did for networking".

Not quite one year old, 2013, the FIDO Alliance has already grown to nearly 70 members, amongst which are heavyweights like Google, Lenovo, MasterCard, Microsoft and PayPal as well as a dozen biometrics vendors and several global players in the smartcard supply chain.

STOP PRESS! Discover Card joined a few days ago at board level.

FIDO is different. The typical hackneyed IDAM elevator pitch in promises to "fix the password crisis" but usually with unintended impacts on how business is done. Most IDAM initiatives unwittingly convert clear-cut technology problems into open-ended business transformation problems.

In welcome contrast, FIDO’s mission is clear cut: it seeks to make strong authentication interoperable between devices and servers. When users have activated FIDO-compliant endpoints, reliable fine-grained information about the state of authentication becomes readily discoverable by any server, which can then make access control decisions according to its own security policy.

FIDO is not about federation; it's not even about "identity"!

With its focus, pragmatism and critical mass, FIDO is justifiably today’s go-to authentication industry standards effort.

For more detail, please have a look at The FIDO Alliance at the Constellation Research website.

Posted in Smartcards, Security, Identity, Biometrics