Lockstep

Mobile: +61 (0) 414 488 851
Email: swilson@lockstep.com.au

The Creepy Test

I'm going to assume readers know what's meant by the "Creepy Test" in privacy. Here's a short appeal to use the Creepy Test sparingly and carefully.

The most obvious problem with the Creepy Test is its subjectivity. One person's "creepy" can be another person's "COOL!!". For example, a friend of mine thought it was cool when he used Google Maps to check out a hotel he was going to, and the software usefully reminded him of his check-in time (evidently, Google had scanned his gmail and mashed up the registration details next time he searched for the property). I actually thought this was way beyond creepy; imagine if it wasn't a hotel but a mental health facility, and Google was watching your psychiatric appointments.

In fact, for some people, creepy might actually be cool, in the same way as horror movies or chilli peppers are cool. There's already an implicit dare in the "Nothing To Hide" argument. Some brave souls seem to brag that they haven't done anything they don't mind being made public.

Our sense of what's creepy changes over time. We can get used to intrusive technologies, and that suits the agendas of infomoplists who make fortunes from personal data, hoping that we won't notice. On the other hand, objective and technology-neutral data privacy principles have been with us for over thirty years, and by and large, they work well to address contemporary problems like facial recognition, the cloud, and augmented reality glasses.

Using folksy terms in privacy might make the topic more accessible to laypeople, but it tends to distract from the technicalities of data privacy regulations. These are not difficult matters in the scheme of things; data privacy is technically about objective and reasonable controls on the collection, use and disclosure of personally identifiable information. I encourage anyone with an interest in privacy to spend time familiarising themselves with common Privacy Principles and the definition of Personal Information. And then it's easy to see that activities like Facebook's automated face recognition and Tag Suggestions aren't merely creepy; they are objectively unlawful!

Finally and most insideously, when emotive terms like creepy are used in debating public policy, it actually disempowers the critical voices. If "creepy" is the worst thing you can say about a given privacy concern, then you're marginalised.

We should avoid being subjective about privacy. By all means, let's use the Creepy Test to help spot potential privacy problems, and kick off a conversation. But as quickly as possible, we need to reduce privacy problems to objective criteria and, with cool heads, debate the appropriate responses.

See also A Theory of Creepy: Technology, Privacy and Shifting Social Norms by Omer Tene and Jules Polonetsky.

      • "Alas, intuitions and perceptions of 'creepiness' are highly subjective and difficult to generalize as social norms are being strained by new technologies and capabilities". Tene & Polonetsky.

Posted in Privacy, Biometrics, Big Data

The Prince of Data Mining

Facial recognition is digital alchemy. It's the prince of data mining.

Facial recognition takes previously anonymous images and conjures peoples' identities. It's an invaluable capability. Once they can pick out faces in crowds, trawling surreptitiously through anyone and everyone's photos, the social network businesses can work out what we're doing, when and where we're doing it, and who we're doing it with. The companies figure out what we like to do without us having to 'like' or favorite anything.

So Google, Facebook, Apple at al have invested hundreds of megabucks in face recognition R&D and buying technology start-ups. And they spend billions of dollars buying images and especially faces, going back to Google's acquisition of Picasa in 2004, and most recently, Facebook's ill-fated $3 billion offer for Snapchat.

But if most people find face recognition rather too creepy, then there is cause for optimism. The technocrats have gone too far. What many of them still don't get is this: If you take anonymous data (in the form of photos) and attach names to that data (which is what Facebook photo tagging does - it guesses who people are in photos are, attaches putative names to records, and invites users to confirm them) then you Collect Personal Information. Around the world, existing pre-biometrics era black letter Privacy Law says you can't Collect PII even indirectly like that without am express reason and without consent.

When automatic facial recognition converts anonymous data into PII, it crosses a bright line in the law.

Posted in Social Networking, Privacy, Biometrics, Big Data

Crowd sourcing private sector surveillance

A repeated refrain of cynics and “infomopolists” alike is that privacy is dead. People are supposed to know that anything on the Internet is up for grabs. In some circles this thinking turns into digital apartheid; some say if you’re so precious about your privacy, just stay offline.

But socialising and privacy are hardly mutually exclusive; we don’t walk around in public with our names tattooed on our foreheads. Why can’t we participate in online social networks in a measured, controlled way without submitting to the operators’ rampant X-ray vision? There is nothing inevitable about trading off privacy for conviviality.

The privacy dangers in Facebook and the like run much deeper than the self-harm done by some peoples’ overly enthusiastic sharing. Promiscuity is actually not the worst problem, neither is the notorious difficulty of navigating complex and ever changing privacy settings.

The advent of facial recognition presents far more serious and subtle privacy challenges.

Facebook has invested heavily in face recognition technology, and not just for fun. Facebook uses it in effect to crowd-source the identification and surveillance of its members. With facial recognition, Facebook is building up detailed pictures of what people do, when, where and with whom.

You can be tagged without consent in a photo taken and uploaded by a total stranger.

The majority of photos uploaded to personal albums over the years were not intended for anything other than private viewing.

Under the privacy law of Australia and data protection regulations in dozens of other jurisdictions, what matters is whether data is personally identifiable. The Commonwealth Privacy Act 1988 (as amended in 2014) defines “Personal Information” as: “information or an opinion about an identified individual, or an individual who is reasonably identifiable”.

Whenever Facebook attaches a member’s name to a photo, they are converting hitherto anonymous data into Personal Information, and in so doing, they become subject to privacy law. Automated facial recognition represents an indirect collection of Personal Information. However too many people still underestimate the privacy implications; some technologists naively claim that faces are “public” and that people can have no expectation of privacy in their facial images, ignoring that information privacy as explained is about the identifiability and identification of data; the words “public” and “private” don’t even figure in the Privacy Act!

If a government was stealing into our photo albums, labeling people and profiling them, there would be riots. It's high time that private sector surveillance - for profit - is seen for what it is, and stopped.

Posted in Social Networking, Social Media, Privacy, Biometrics

Schrodinger's Privacy: A Master Class

Master Class: How to Protect Your Customer's Digital Identity and Personal Data

A Social Media Week Sydney event #SMWSydney
Law Lounge, Sydney University Law School
New Law School Building
Eastern Ave, Camperdown
Fri, Sep 26 - 10:00 AM - 11:30 AM

How can you navigate privacy fact and fiction, without the geeks and lawyers boring each other to death?

It's often said that technology has outpaced privacy law. Many digital businesses seem empowered by this brash belief. And so they proceed with apparent impunity to collect and monetise as much Personal Information as they can get their hands on.

But it's a myth!

Some of the biggest corporations in the world, including Google and Facebook, have been forcefully brought to book by privacy regulations. So, we have to ask ourselves:

  • what does privacy law really mean for social media in Australia?
  • is privacy "good for business"?
  • is privacy "not a technology issue"?
  • how can digital businesses navigate fact & fiction, without their geeks and lawyers boring each other to death?

In this Social Media Week Master Class I will:

  • unpack what's "creepy" about certain online practices
  • show how to rate data privacy issues objectively
  • analyse classic misadventures with geolocation, facial recognition, and predicting when shoppers are pregnant
  • critique photo tagging and crowd-sourced surveillance
  • explain why Snapchat is worth more than three billion dollars
  • analyse the regulatory implications of Big Data, Biometrics, Wearables and The Internet of Things.

We couldn't have timed this Master Class better, coming two weeks after the announcement of the Apple Watch, which will figure prominently in the class!

So please come along, for a fun and in-depth a look at social media, digital technology, the law, and decency.

Register here.

About the presenter

Steve Wilson is a technologist, who stumbled into privacy 12 years ago. He rejected those well meaning slogans (like "Privacy Is Good For Business!") and instead dug into the relationships between information technology and information privacy. Now he researches and develops design patterns to help sort out privacy, alongside all the other competing requirements of security, cost, usability and revenue. His latest publications include:

  • "The collision between Big Data and privacy law" due out in October in the Australian Journal of Telecommunications and the Digital Economy.

Posted in Social Networking, Social Media, Privacy, Internet, Biometrics, Big Data

Safeguarding the pedigree of personal attributes

The problem of identity takeover

The root cause of much identity theft and fraud today is the sad fact that customer reference numbers, personal identifiers and attributes generally are so easy to copy and replay without permission and without detection. Simple numerical attributes like bank account numbers and health IDs can be stolen from many different sources, and replayed with impunity in bogus transactions.

Our personal data nowadays is leaking more or less constantly, through breached databases, websites, online forms, call centres and so on, to such an extent that customer reference numbers on their own are no longer reliable. Privacy consequentially suffers because customers are required to assert their identity through circumstantial evidence, like name and address, birth date, mother’s maiden name and other pseudo secrets. All this data in turn is liable to be stolen and used against us, leading to spiraling identity fraud.

To restore the reliability of personal attribute data, we need to know their pedigree. We need to know that a presented data item is genuine, that it originated from a trusted authority, it’s been stored safely by its owner, and it’s been presented with the owner’s consent. If confidence in single attributes can be restored then we can step back from all the auxiliary proof-of-identity needed for routine transactions, and thus curb identity theft.

A practical response to ID theft

Several recent breaches of government registers leave citizens vulnerable to ID theft. In Korea, the national identity card system was attacked and it seems that all Korean's citizen IDs will have to be re-issued. In the US, Social Security Numbers are often stolen and used tin fraudulent identifications; recently, SSNs of 800,000 Post Office employees appear to have been stolen along with other personal records.

We could protect people against having their stolen identifiers used behind their backs. It shouldn't actually be necessary to re-issue every Korean's ID. Improvements may be made to the reliability of identification data without dramatically changing Relying Parties' backend processes. If for instance a service provider has always used SSN as part of its identification regime, they could continue to do so, if only the actual Social Security Numbers being received were reliable!

The trick is to be able to tell "original" ID numbers from "copies". But what does "original" even mean in the digital world? A more precise term for what we really want is pedigree. What we need is to be able to present attribute data in such a way that the receiver may be sure of their pedigree; that is, know that the attributes were originally issued by an authoritative body, that the data has been kept safe, and that each presentation of the attribute has occurred under the owner's control.

These objectives can be met with the help of smart cryptographic technologies which today are built into most smart phones and smartcards, and which are finally being properly exploited by initiatives like the FIDO Alliance.

"Notarising" attributes in chip devices

There are ways of issuing attributes to a smart chip device that prevent them from being stolen, copied and claimed by anyone else. One way to do so is to encapsulate and notarise attributes in a unique digital certificate issued to a chip. Today, a great many personal devices routinely embody cryptographically suitable chips for this purpose, including smart phones, SIM cards, "Secure Elements", smartcards and many wearable computers.

Consider an individual named Smith to whom Organisation A has issued a unique attribute N (which could be as simple as a customer reference number). If N is saved in ordinary computer memory or something like a magnetic stripe card, then it has no pedigree. Once the number N is presented by the cardholder in a transaction, it has the same properties as any other number. To better safeguard N in a chip device, it can be sealed into a digital certificate, as follows:

1. generate a fresh private-public key pair inside Smith’s chip
2. export the public key
3. create a digital certificate around the public key, with an attribute corresponding to N
4. have the certificate signed by (or on behalf of) organisation A.

Pedigree Diagram 140901

The result of coordinating these processes and technologies is a logical triangle that inextricably binds cardholder Smith to their attribute N and to a specific personally controlled device. The certificate signed by organisation A attests to both Smith’s entitlement to N and Smith's control of a particular key unique to the device. Keys generated inside the chip are retained internally, never divulged to outsiders. It is not possible to copy the private key to another device, so the logical triangle cannot be reproduced or counterfeited.

Note that this technique lies at the core of the EMV "Chip-and-PIN" system where the smart payment card digitally signs cardholder and transaction data, rendering it immune to replay, before sending it to the merchant terminal. See also my 2012 paper Calling for a uniform approach to card fraud, offline and on. Now we should generalise notarised personal data and digitally signed transactions beyond Card-Present payments into as much online business as possible.

Restoring privacy and consumer control

When Smith wants to present their attribute N in an electronic transaction, instead of simply copying N out of memory (at which point it would lose its pedigree), Smith’s transaction software digitally signs the transaction using the certificate containing N. With standard security software, any third party can then verify that the transaction originated from a genuine chip holding the unique key certified by A as containing the attribute N.

Note that N doesn't have to be a customer number or numeric identifier; it could be any personal data, such as a biometric template, or a package of medical information like an allergy alert, or an interesting isolated (and anonymous) property of the user such as their age.

The capability to manage multiple key pairs and certificates, and to sign transactions with a nominated private key, is increasingly built into smart devices today. By narrowing down what you need to know about someone to a precise attribute or personal data item, we will reduce identity theft and fraud while radically improving privacy. This sort of privacy enhancing technology is the key to a safe Internet of Things, and fortunately now is widely available.

Addressing ID theft

Perhaps the best thing governments could do immediately is to adopt smartcards and equivalent smart phone apps for holding and presenting such attributes as official ID numbers. The US government has actually come close to such a plan many times; Chip-based Social Security Cards and Medicare Cards have been proposed before, without realising their full potential. These devices would best be used as above to hold a citizen's identifiers and present them cryptographically, without vulnerability to ID theft and takeover. We wouldn't have to re-issue compromised SSNs; we would instead switch from manual presentation of these numbers to automatic online presentation, with a chip card or smart phone app conveying the data through digitally signatures.

Posted in Smartcards, Security, PKI, Payments, Identity, Fraud, Biometrics

Postcard from Monterey #CISmcc

First Day Reflections from CIS Monterey.

Follow along on Twitter at #CISmcc (for the Monterey Conference Centre).

The Cloud Identity Summit really is the top event on the identity calendar. The calibre of the speakers, the relevance and currency of the material, the depth and breadth of the cohort, and the international spread are all unsurpassed. It's been great to meet old cyber-friends in "XYZ Space" at last -- like Emma Lindley from the UK and Lance Peterman. And to catch up with such talented folks like Steffen Sorensen from New Zealand once again.

A day or two before, Ian Glazer of Salesforce asked in a tweet what we were expecting to get out of CIS. And I replied that I hoped to change my mind about something. It's unnerving to have your understanding and assumptions challenged by the best in the field ... OK, sometimes it's outright embarrassing ... but that's what these events are all about. A very wise lawyer said to me once, around 1999 at the dawn of e-commerce, that he had changed his mind about authentication a few times up to that point, and that he fully expected to change his mind again and again.

I spent most of Saturday in Open Identity Foundation workshops. OIDF chair Don Thibeau enthusiastically stressed two new(ish) initiatives: Mobile Connect in conjunction with the mobile carrier trade association GSM Association @GSMA, and HIE Connect for the health sector. For the uninitiated, HIE means Health Information Exchange, namely a hub for sharing structured e-health records among hospitals, doctors, pharmacists, labs, e-health records services, allied health providers, insurers, drug & device companies, researchers and carers; for the initiated, we know there is some language somewhere in which the letters H.I.E. stand for "Not My Lifetime".

But seriously, one of the best (and pleasantly surprising) things about HIE Connect as the OIDF folks tell it, is the way its leaders unflinchingly take for granted the importance of privacy in the exchange of patient health records. Because honestly, privacy is not a given in e-health. There are champions on the new frontiers like genomics that actually say privacy may not be in the interests of the patients (or more's the point, the genomics businesses). And too many engineers in my opinion still struggle with privacy as something they can effect. So it's great -- and believe me, really not obvious -- to hear the HIE Connects folks -- including Debbie Bucci from the US Dept of Health and Human Services, and Justin Richer of Mitre and MIT -- dealing with it head-on. There is a compelling fit for the OAUTH and OIDC protocols here, with their ability to manage discrete pieces of information about users (patients) and to permission them all separately. Having said that, Don and I agree that e-health records permissioning and consent is one of the great UI/UX challenges of our time.

Justin also highlighted that the RESTful patterns emerging for fine-grained permissions management in healthcare are not confined to healthcare. Debbie added that the ability to query rare events without undoing privacy is also going to be a core defining challenge in the Internet of Things.

MyPOV: We may well see tremendous use cases for the fruits of HIE Exchange before they're adopted in healthcare!

In the afternoon, we heard from Canadian and British projects that have been working with the Open Identity Exchange (OIX) program now for a few years each.

Emma Lindley presented the work they've done in the UK Identity Assurance Program (IDAP) with social security entitlements recipients. These are not always the first types of users we think of for sophisticated IDAM functions, but in Britain, local councils see enormous efficiency dividends from speeding up the issuance of eg disabled parking permits, not to mention reducing imposters, which cost money and lead to so much resentment of the well deserved. Emma said one Attributes Exchange beta project reduced the time taken to get a 'Blue Badge' permit from 10 days to 10 minutes. She went on to describe the new "Digital Sources of Trust" initiative which promises to reconnect under-banked and under-documented sections of society with mainstream financial services. Emma told me the much-abused word "transformational" really does apply here.

MyPOV: The Digital Divide is an important issue for me, and I love to see leading edge IDAM technologies and business processes being used to do something about it -- and relatively quickly.

Then Andre Boysen of SecureKey led a discussion of the Canadian identity ecosystem, which he said has stabilised nicely around four players: Federal Government, Provincial Govt, Banks and Carriers. Lots of operations and infrastructure precedents from the payments industry have carried over.
Andre calls the smart driver license of British Columbia the convergence of "street identity and digital identity".

MyPOV: That's great news - and yet comparable jurisdictions like Australia and the USA still struggle to join governments and banks and carriers in an effective identity synthesis without creating great privacy and commercial anxieties. All three cultures are similarly allergic to identity cards, but only in Canada have they managed to supplement drivers licenses with digital identities with relatively high community acceptance. In nearly a decade, Australia has been at a standstill in its national understanding of smartcards and privacy.

For mine, the CIS Quote of the Day came from Scott Rice of the Open ID Foundation. We all know the stark problem in our industry of the under-representation of Relying Parties in the grand federated identity projects. IdPs and carriers so dominate IDAM. Scott asked us to imagine a situation where "The auto industry was driven by steel makers". Governments wouldn't put up with that for long.

Can someone give us the figures? I wonder if Identity and Access Management is already more economically ore important than cars?!

Cheers from Monterey, Day 1.

Posted in Smartcards, Security, Identity, Federated Identity, e-health, Cloud, Biometrics, Big Data

Webinar: Big Privacy

I'm presenting a Constellation Research webinar next week on my latest research into "Big Privacy" (June 18th in the US / June 19th in Australia). I hope you can join us.

Register here.

We live in an age where billionaires are self-made on the back of the most intangible of assets – the information they have amassed about us. That information used to be volunteered in forms and questionnaires and contracts but increasingly personal information is being observed and inferred.

The modern world is awash with data. It’s a new and infinitely re-usable raw material. Most of the raw data about us is an invisible by-product of our mundane digital lives, left behind by the gigabyte by ordinary people who do not perceive it let alone understand it.

Many Big Data and digital businesses proceed on the basis that all this raw data is up for grabs. There is a particular widespread assumption that data in the "public domain" is free-for-all, and if you’re clever enough to grab it, then you’re entitled to extract whatever you can from it.

In the webinar, I'll try to show how some of these assumptions are naive. The public is increasingly alarmed about Big Data and averse to unbridled data mining. Excessive data mining isn't just subjectively 'creepy'; it can be objectively unlawful in many parts of the world. Conventional data protection laws turn out to be surprisingly powerful in in the face of Big Data. Data miners ignore international privacy laws at their peril!

Today there are all sorts of initiatives trying to forge a new technology-privacy synthesis. They go by names like "Privacy Engineering" and "Privacy by Design". These are well meaning efforts but they can be a bit stilted. They typically overlook the strengths of conventional privacy law, and they can miss an opportunity to engage the engineering mind.

It’s not politically correct but I believe we must admit that privacy is full of contradictions and competing interests. We need to be more mature about privacy. Just as there is no such thing as perfect security, there can never be perfect privacy either. And is where the professional engineering mindset should be brought in, to help deal with conflicting requirements.

If we’re serious about Privacy by Design and Privacy Engineering then we need to acknowledge the tensions. That’s some of the thinking behind Constellation's new Big Privacy compact. To balance privacy and Big Data, we need to hold a conversation with users that respects the stresses and strains, and involves them in working through the new privacy deal.

The webinar will cover these highlights of the Big Privacy pact:

    • Respect and Restraint
    • Super transparency
    • And a fair deal for Personal Information.

Have a disruptive technology implementation story? Get recognised for your leadership. Apply for the 2014 SuperNova Awards for leaders in disruptive technology.

Posted in Social Media, Privacy, Constellation Research, Biometrics, Big Data

Three billion was a Snap

The latest Snowden revelations include the NSA's special programs for extracting photos and identifying from the Internet. Amongst other things the NSA uses their vast information resources to correlate location cues in photos -- buildings, streets and so on -- with satellite data, to work out where people are. They even search especially for passport photos, because these are better fodder for facial recognition algorithms. The audacity of these government surveillance activities continues to surprise us, and their secrecy is abhorrent.

Yet an ever greater scale of private sector surveillance has been going on for years in social media. With great pride, Facebook recently revealed its R&D in facial recognition. They showcased the brazenly named "DeepFace" biometric algorithm, which is claimed to be 97% accurate in recognising faces from regular images. Facebook has made a swaggering big investment in biometrics.

Data mining needs raw material, there's lots of it out there, and Facebook has been supremely clever at attracting it. It's been suggested that 20% of all photos now taken end up in Facebook. Even three years ago, Facebook held 10,000 times as many photographs as the Library of Congress:

Largest photo libraries
[Picture courtesy of the now retired 1000memories.com blog]

And Facebook will spend big buying other photo lodes. Last year they tried to buy Snapchat for the spectacular sum of three billion dollars. The figure had pundits reeling. How could a start-up company with 30 people be worth so much? All the usual dot com comparisons were made; the offer seemed a flight of fancy.

But no, the offer was a rational consideration for the precious raw material that lies buried in photo data.

Snapchat generates at least 100 million new images every day. Three billion dollars was, pardon me, a snap. I figure that at a ballpark internal rate of return of 10%, a $3B investment is equivalent to $300M p.a. so even if the Snapchat volume stopped growing, Facebook would have been paying one cent for every new snap, in perpetuity.

These days, we have learned from Snowden and the NSA that communications metadata is just as valuable as the content of our emails and phone calls. So remember that it's the same with photos. Each digital photo comes from a device that embeds within the image metadata usually including the time and place of when the picture was taken. And of course each Instagram or Snapchat is a social post, sent by an account holder with a history and rich context in which the image yields intimate real time information about what they're doing, when and where.

The hallmark of the Snapchat service is transience: all those snaps are supposed to flit from one screen to another before vaporising. Now of course that idea is contestable; enthusiasts worked out pretty quickly how to retrieve snaps from old memory. And in any case, transience is a red herring, perhaps a deliberate distraction, because the metadata matters more, and Snapchat admits in its Privacy Policy that it pretty well keeps the lot:

  • When you access or use our Services, we automatically collect information about you, including:
  • Usage Information: When you send or receive messages via our Services, we collect information about these messages, including the time, date, sender and recipient of the Snap. We also collect information about the number of messages sent and received between you and your friends and which friends you exchange messages with most frequently.
  • Log Information: We log information about your use of our websites, including your browser type and language, access times, pages viewed, your IP address and the website you visited before navigating to our websites.
  • Device Information: We may collect information about the computer or device you use to access our Services, including the hardware model, operating system and version, MAC address, unique device identifier, phone number, International Mobile Equipment Identity ("IMEI") and mobile network information. In addition, the Services may access your device's native phone book and image storage applications, with your consent, to facilitate your use of certain features of the Services.
  • Location Information: With your consent, we may collect information about the location of your device to facilitate your use of certain features of our Services, determine the speed at which your device is traveling, add location-based filters to your Snaps (such as local weather), and for any other purpose described in this privacy policy.

Snapchat goes on to declare it may use any of this information to "personalize and improve the Services and provide advertisements, content or features that match user profiles or interests" and it reserves the right to share any information with "vendors, consultants and other service providers who need access to such information to carry out work on our behalf".

So back to the data mining: nothing stops Snapchat -- or a new parent company -- running biometric facial recognition over the snaps as they pass through the servers, to extract additional "profile" information. And there's an extra kicker that makes Snapchats extra valuable for biometric data miners. The vast majority of Snapchats are selfies. So if you extract a biometric template from a snap, you already know who it belongs to, without anyone having to tag it. Snapchat would provide a hundred million auto-calibrations every day for facial recognition algorithms! On Facebook, the privacy aware turn off photo tagging, but with Snapchats, self identification is inherent to the experience and is unlikely to be ever be disabled.

NSA has all your selfies

As I've discussed before, the morbid thrill of Snowden's spying revelations has tended to overshadow his sober observations that when surveillance by the state is probably inevitable, we need to be discussing accountability.

While we're all ventilating about the NSA, it's time we also attended to private sector spying and properly debated the restraints that may be appropriate on corporate exploitation of social data.

Personally I'm much more worried that an infomopoly has all my selfies.

Have a disruptive technology implementation story? Get recognised for your leadership. Apply for the 2014 SuperNova Awards for leaders in disruptive technology.

Posted in Social Networking, Social Media, Privacy, Biometrics, Big Data

The strengths and weaknesses of Data Privacy in the Age of Big Data

This is the abstract of a current privacy conference proposal.

Synopsis

Many Big Data and online businesses proceed on a naive assumption that data in the "public domain" is up for grabs; technocrats are often surprised that conventional data protection laws can be interpreted to cover the extraction of PII from raw data. On the other hand, orthodox privacy frameworks don't cater for the way PII can be created in future from raw data collected today. This presentation will bridge the conceptual gap between data analytics and privacy, and offer new dynamic consent models to civilize the trade in PII for goods and services.

Abstract

It’s often said that technology has outpaced privacy law, yet by and large that's just not the case. Technology has certainly outpaced decency, with Big Data and biometrics in particular becoming increasingly invasive. However OECD data privacy principles set out over thirty years ago still serve us well. Outside the US, rights-based privacy law has proven effective against today's technocrats' most worrying business practices, based as they are on taking liberties with any data that comes their way. To borrow from Niels Bohr, technologists who are not surprised by data privacy have probably not understood it.

The cornerstone of data privacy in most places is the Collection Limitation principle, which holds that organizations should not collect Personally Identifiable Information beyond their express needs. It is the conceptual cousin of security's core Need-to-Know Principle, and the best starting point for Privacy-by-Design. The Collection Limitation principle is technology neutral and thus blind to the manner of collection. Whether PII is collected directly by questionnaire or indirectly via biometric facial recognition or data mining, data privacy laws apply.

It’s not for nothing we refer to "data mining". But few of those unlicensed data gold diggers seem to understand that the synthesis of fresh PII from raw data (including the identification of anonymous records like photos) is merely another form of collection. The real challenge in Big Data is that we don’t know what we’ll find as we refine the techniques. With the best will in the world, it is hard to disclose in a conventional Privacy Policy what PII might be collected through synthesis down the track. The age of Big Data demands a new privacy compact between organisations and individuals. High minded organizations will promise to keep people abreast of new collections and will offer ways to opt in, and out and in again, as the PII-for-service bargain continues to evolve.

Posted in Social Networking, Privacy, Biometrics, Big Data

FIDO Alliance goes from strength to strength

With a bunch of exciting new members joining up on the eve of the RSA Conference, the FIDO Alliance is going from strength to strength. And they've just published the first public review drafts of their core "universal authentication" protocols.

An update to my Constellation Research report on FIDO is now available. Here's a preview.

The Go-To standards alliance in protocols for modern identity management

The FIDO Alliance – for Fast IDentity Online – is a fresh, fast growing consortium of security vendors and end users working out a new suite of protocols and standards to connect authentication endpoints to services. With an unusual degree of clarity in this field, FIDO envisages simply "doing for authentication what Ethernet did for networking".

Launched in early 2013, the FIDO Alliance has already grown to nearly 100 members, amongst which are heavyweights like Google, Lenovo, MasterCard, Microsoft and PayPal as well as a couple of dozen biometrics vendors, many of the leading Identity and Access Management solutions and service providers and several global players in the smartcard supply chain.

FIDO is different. The typical hackneyed elevator pitch in Identity and Access Management promises to "fix the password crisis" – usually by changing the way business is done. Most IDAM initiatives unwittingly convert clear-cut technology problems into open-ended business transformation problems. In contrast, FIDO's mission is refreshingly clear cut: it seeks to make strong authentication interoperable between devices and servers. When users have activated FIDO-compliant endpoints, reliable fine-grained information about their client environment becomes readily discoverable by any servers, which can then make access control decisions, each according to its own security policy.

With its focus, pragmatism and critical mass, FIDO is justifiably today's go-to authentication standards effort.

In February 2014, the FIDO Alliance announced the release of its first two protocol drafts, and a clutch of new members including powerful players in financial services, the cloud and e-commerce. Constellation notes in particular the addition to the board of security leader RSA and another major payments card, Discover. And FIDO continues to strengthen its vital “Relying Party” (service provider) representation with the appearance of Aetna, Goldman Sachs, Netflix and Salesforce.com.

It's time we fixed the Authentication plumbing

In my view, the best thing about FIDO is that it is not about federated identity but instead it operates one layer down in what we call the digital identity stack. This might seem to run against the IDAM tide, but it's refreshing, and it may help the FIDO Alliance sidestep the quagmire of identity policy mapping and legal complexities. FIDO is not really about the vexed general issue of "identity" at all! Instead, it's about low level authentication protocols; that is, the plumbing.

The FIDO Alliance sets out its mission as follows:

  • Change the nature of online authentication by:
    • Developing technical specifications that define an open, scalable, interoperable set of mechanisms that reduce the reliance on passwords to authenticate users.
    • Operating industry programs to help ensure successful worldwide adoption of the Specifications.
    • Submitting mature technical Specification(s) to recognized standards development organization(s) for formal standardization.

The engineering problem underlying Federated Identity is actually pretty simple: if we want to have a choice of high-grade physical, multi-factor "keys" used to access remote services, how do we convey reliable cues to those services about the type of key being used and the individual who's said to be using it? If we can solve that problem, then service providers and Relying Parties can sort out for themselves precisely what they need to know about the users, sufficient to identify and authenticate them.

All of these leaves the 'I' in the acronym "FIDO" a little contradictory. It's such a cute name (alluding of course to the Internet dog) that it's unlikely to change. Instead, I overheard that the acronym might go the way of "KFC" where eventually it is no longer spelled out and just becomes a word in and of itself.

FIDO Alliance Board Members

  • Blackberry
  • CrucialTec (manufactures innovative user input devices for mobiles)
  • Discover Card
  • Google
  • Lenovo
  • MasterCard
  • Microsoft
  • Nok Nok Labs (a specialist authentication server software company)
  • NXP Semiconductors (a global supplier of card chips, SIMs and Secure Elements)
  • Oberthur Technologies (a multinational smartcard and mobility solutions provider)
  • PayPal
  • RSA
  • Synaptics (fingerprint biometrics)
  • Yubico (the developer of the YubiKey PKI enabled 2FA token).

FIDO Alliance Board Sponsor Level Members

  • Aetna
  • ARM
  • AGNITiO
  • Dell
  • Discretix
  • Entersekt
  • EyeLock Inc.
  • Fingerprint Cards AB
  • FingerQ
  • Goldman Sachs
  • IdentityX
  • IDEX ASA
  • Infineon
  • Kili
  • Netflix
  • Next Biometrics Group
  • Oesterreichische Staatsdruckerei GmbH
  • Ping Identity
  • SafeNet
  • Salesforce
  • SecureKey
  • Sonavation
  • STMicroelectronics
  • Wave Systems

Stay tuned for the updated Constellation Research report.

Posted in Smartcards, Security, Identity, Federated Identity, Constellation Research, Biometrics